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A CHARACTERIZATION OF NONSTANDARD 
LIFTINGS OF MEASURABLE FUNCTIONS 

AND STOCHASTIC PROCESSES 

BY 

HERMANN RODENHAUSEN 

ABSTRACq 

The concept of a lifting of a measurable function in nonstandard stochastic 
analysis is studied. Several characterizations of liftings are given. The theory of 
liftings is related to standard measure-theoretical results about the Lebesgue 
space L'([O, l]). A method to construct liftings is presented. 

0. Introduction 

Liftings can be thought of as nonstandard versions of measurable functions or 

stochastic processes. The concept of a lifting of a measurable function is touched 

in Loeb's paper [6] where he shows how to convert internal *-additive measures 

into o'-additive external ones. Anderson [1], Keisler [4], and Lindstr6m [5] used 

liftings to develop the nonstandard theory of stochastic integration. 

Liftings have properties nice to work with (e.g. hyperfiniteness in [4], [5]) and 

resemble their standard versions in a large part of their properties. Using liftings, 

integrals of functions can be written as hyperfinite sums (see [4], [6], [1]), 

stochastic differential equations as hyperfinite stochastic difference equations 
(cf. [4]). 

Keisler [4] gave a nonstandard characterization of Eebesgue measurability of 

functions [0, i]--* R by showing that measurable functions are exactly the ones 
having a lifting. 

in this paper we develop a number of conditions characterizing the property of 

being a lifting. The characterization problem for liftings is typical for nonstan- 

dard analysis in the sense that it is one instance of the general problem of taking 

"standard parts": by working with nonstandard objects to study properties of 

standard objects it often becomes necessary to show that an internally con- 

structed nonstandard object (whose external properties are not fully known) 

represents a standard entity. 
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In the first section we characterize liftings by a variation principle. The 

problem of showing that something is a lifting is reduced to a simple calculation. 

The approximative nature of liftings is made precise in the second section 

where we use the results of the first section to characterize liftings as nearstan- 

dard elements with respect to some suitable space of measurable functions 

related to L'([0, 1]). This new aspect of liftings opens the way for nonstandard 

proofs of standard results about the set of measurable functions on [0, 1] using 

known facts about liftings; we show how fundamental properties of L~([0, 1]) 

such as completeness and separability are reflected in the nonstandard theory. It 

turns out that there is a close relationship between theorems about liftings and 

standard measure-theoretical results about the set of measurable functions on 

[0, 1]; one can also use such results to give new proofs of known facts about 

liftings. 

As a consequence of the nearstandardness characterization of liftings we show 

that with respect to integration, liftings reflect the properties of their standard 

versions. Moreover, liftings are even characterized by that property which shows 

lhat they are the right nonstandard representatives of standard functions in a 

hyperfinite integration theory. 

In the third section we give an explicit formula to construct liftings of 

measurable functions [0, 1]---*R which we also apply to stochastic processes. 

We assume that the reader is familiar with the basics of both nonstandard 

analysis and standard measure theory. For background see [7] or 12], respec- 

tively. 
We essentially adopt the notation of [4]. Throughout this paper we assume 

that T is a "hyperfinite time interval" of the form T = {K/H ] K E *No, K < H} 
where H E *N - N (No denotes the set N U {0}), l! is a hyperfinite set, and (M, d)  

a complete separable metric space. The standard part of elements t E ' R ,  
p E *M, etc. is denoted by ~ ~ etc. For any hyperfinite set I', the internal 

cardinality of F is denoted by IFI. For r E * R ,  [r] denotes the largest 

hyperinteger less than or equal to r. For any hyperfinite set F, P~. denotes the 

normalized internal counting measure on 1" and P~ the (completed) associated 

Loeb measure, i.e. P~- is the completion of the unique o--additive measure/Sr- on 

the o--algebra generated by the internal subsets of F such that /Sr(B)  = ~ 

for all internal B C 1" (see [6]). When referring to a measure on a hyperfinite set 

F, we always mean Pr. On [0, I] and [0, 1] 2 we work with the Lebesgue measures 

which are denoted by A and A ~, respectively. On ~ • [0, 1] we consider the 

completion of P~ x A. 
We now state some results from the literature on Loeb measures. 
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DEFINITION A (cf. [1], [4], [6]). Let (At, d)  be a separable metric space. A 

function V:f~---~*At is said to be a lifting of v : ~ - o A t  if V is internal and 

~ = v(to)  a.s. (P,,). 

F :  T--->*At is a lifting of f :[O, 1]-oAt if F is internal and ~176  a.s. 

(Pr). 
X : ~ • T-- ,  *At is a lifting of x : f~ • [0, 1] -o At if X is internal and ~ t) -- 

x(to,~ a.s. (P,• 

REMARK B. In the second section it is sometimes more natural to work with 

liftings that are defined on the whole of *[0, 1] (l~ x *[0, 1]) instead of T (fl x T). 

Such a concept of a lifting can be defined correspondingly (cf. [1]); the Loeb 
measure associated to *A on *[0, 1] then replaces PT. All results quoted below 

and proved in the paper hold correspondingly for this modified concept. 

However, the hyperfinite notion of a lifting as defined above turns out to be 

sufficient for the nonstandard treatment of measurable functions [ 0 , 1 ] - o M  

discussed in w 

THEOREM C (cf. [1], [4], [6]). Let (At, d) be a separable metric space. 

O) v : ~---}./R has a lifting if  and only if v is measurable. 

(ii) [ : [0, 1]-o At has a lifting if and only if f is measurable. 
(iii) x : ~ x  [0, 1]-*At has a lifting if and only if x is measurable. 

THEOREM D (cf. [6]). Let 1-' be a hyperfinite set. For any Pr-measurable set 
V C F ,  

Pr(V) = sup{~ l U C V, U internal}. 

THEOREM E (cf. [1]). The standard part mapping s t : T - o f 0 , 1 ] ,  t - o ~  is 
measurable and measure-preserving, i.e. for any Lebesgue measurable B C [0, 1], 
st-t(B) is Loeb measurable and 

Pr (st- '(B)) = A (B). 

THEOREM F (Fubini theorem for Loeb measure, cf. [3]). Let lql and D,2 be 
hyper]inite and let x : ~,  • D~---*R be bounded and Pa,• Then: 

(i) For almost all to, ~ f~,, x ( w , .  ) is Loeb measurable on D.2. 

(ii) The function y(to~)= f x(to~, to2)dPa~(t02) is Loeb measurable on lq~. 
(iii) f x ((.~1, to2)dP~,• (o2) = f ( f  x (to~, ~02)dP, h(to2))dPal(t0i). 

We use the following extensions of the concepts of integrability and S- 

integrability (cf. [1]) to functions with values in arbitrary metric spaces At(*At, 

respectively). 

For any probability space H and metric space (At, d), a function f : H - o A t  is 
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said to be integrable with respect to d if f is measurable and for any p E M the 

function d(f(Tr),p) : 1-I---> R is integrable. This is the case for any p E M if and 

only if it is the case for some p E M. The concept of internal integrability with 

respect to *d is defined accordingly for internal *Z-valued functions on internal 

probability spaces. 

Now let (A,/Z) be an internal probability space. We will mostly work with 

hyperfinite spaces (with normalized internal counting measure) so that internal 

integrals over A become hyperfinite sums. Let (M,d)  be a metric space. A 

function J : A ~ *M which is internally integrable with respect to *d is said to 

be S-integrable with respect to d if for any (i.e. for some) p E M the function 

*d(J(ca), *p):A---> *R is S-integrable, i.e. for any/z-measurable  B C_ A, 

/z(B) ~ 0 ==), fs  *d(J(to), *p)d/z -~ 

I 

0. 

For M = R, d the standard metric of R, this means that J is S-integrable: let 

J"  A ~ *R be internally integrable. Obviously, J is S-integrable with respect to 

the standard metric of R if[ for any/z-measurable  B C A 

/z(B)~-O ~ fB J(,,,)d/z ---0, 

which says that J is S-integrable (see [1], also Theorem H). 

The following two theorems about functions which are S-integrable with 

respect to d are straightforward generalizations of corresponding results for 

S-integrable functions: 

THEOREM G (cf. [1], [6]). Let (M, d) be a separable, metric space. 
(i) v : l-l---> M has a lifting which is S-integrable with respect to d if and only if 

v is integrable with respect to d. 
(ii) f : [0, 1] ---> M has a lifting which is S-integrable with respect to d if and only 

if f is integrable with respect to d. 
(iii) x : f l  x [0, 1] ---> M has a lifting which is S-integrable with respect to d if and 

only if x is integrable with respect to d. 

Tm~OREM H [cf. [1]). Let (A, /z ) be an internal probability space and (M, d) a 

metric space. Let J : A ~ *.tl be internally integrable with respect to * d. J is 

S-integrable with respect to d if  and only if for any p E M, of d (J (o~ ), *p )d/z exists 

and 

of of *d(J(w),  *p)d/z = *d(J(oo), *p) ^ nd/z 

if and only if this holds for some p E dL 
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THEOREM I (cf. [1]). Let f :[O, 1]--+R be integrable and let F : T-->*R be an 

S-integrable lifting of f. Then 

~  F(t)l TI-' = f(t)dt. 
l E T  

In the following considerations T can easily be replaced by any other 

hyperfinite S-dense (i.e. the image under st is [0, 1]) subset of *[0, 1]. [0, 1] can be 

replaced by [0, 1] k for k E N. 

The treatment of internal functions F : T - - > * M  and hyperfinite stochastic 

processes X : 12 x T---> *M in the first section is parallel. Most results can be 

formulated in corresponding ways for both types of functions so that we will 

present the proofs only for internal X : 12 x T---> *M and add " (F  : T--> *M)" to 

indicate that internal functions F :  T--->*M are treated correspondingly. 

The case for internal F :  T--->*M can also be directly reduced to that of 

internal X : f l x  T--> *M by defining an co-independent process X(r t): = F(t)  
( co E l~, t E T ). 

I. Characterization of liftings by a variation principle 

We use the following variation principle to characterize the smoothness of 

liftings: 

DEFINITION 1. For any ~" E *[0, 1] let 

A=:--- {(t, t ') ~ T=[ It -t ' l--< ~'}. 

Assume X : 12 x T--~ *M is internal. X is said to satisfy the lifting condition if for 
every positive infinitesimal ~" 

Pa• (X(r t) ~ X(to, t')) = 1. + 

Correspondingly, an internal function F:  T ~ * M satisfies the lifting condition if 
for every positive infinitesimal ~- 

* We use the term 

Pa• (X(to, t) ~ X(to, t')) 

as abbreviation for 

e,x,,({(to, (t, c)) E ~ x A [ X(,o, t) = X(to, C)}). 

More generally, if (II, v) is a probability space and S a statement about the elements to of a set 
11'DII, we write v(S(to)) for v({to E l i  IS(to)} ). This convention is correspondingly applied to 
internal probability spaces. 
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Pa, (F(t) ~- F(t')) = 1. 

DEFINITION 2. An internal  funct ion X : l i  x T---) *M is called smooth if there  

exists a Loeb  measurable  U C_ lq x T such that Pa• 1 and for  all to E f l  

and t , t ' E  T 

if (to, t)  E U and (to, t') E U and t ~ l '  then X(to, l)  ~ X(to, t'). 

An internal  function F:T- - -~*M is called smooth if there  exists a Loeb  

measurable  UC_ T such that P T ( U )  = 1 and for all t , t ' E  U 

if t ~ 1' then F(t)  ~ F(t'). 

Obviously,  X : I I x T - - > * M  ( F : T - - ~ * M )  is a lifting of some funct ion x :  

1~ x [0, 1] --> M (f  : [0, 1] --> M )  if and only if X (F)  is smooth  and has values a.s. 

nears tandard  in *M. 

Given an internal funct ion F : T--~ *M, we shall hencefor th  simply say "F  is a 

lifting" to mean that F is a lifting of some funct ion f : [0, 1]-~ M. Correspond-  

ingly, we say that an internal  funct ion X : l i  x T--> *M "is a lifting" if X is a 

lifting of some function x : l i  x [0, 1] ~ M. 

THEOREM 3. Let X : l i x  T--->*M ( F :  T ~ *M) be internal. X (F) is a lifting 

if and only if it satisfies the lifting condition and has values a.s. nearstandard in 
*M. 

PROOF. We show in several steps that X is smooth  exactly in case it satisfies 

the lifting condition.  The  first step is 

PROPOSITION 4. Let X : l-I x T--~ * M (F : T--* *M)  be internal. X (F) satisfies 

the lifting condition if it is smooth. 

PROOF. Let  X be smooth  and U C_ f l  x T such that P~• (U)  = 1 and for all 

to E l l  and t , t ' E  T 

if (to, t) E U and (to, t ')  E U and t ~ t '  then X(to, t) ~ X(to, t'). 

Let  ~ be a positive infinitesimal and let 

W0") :  = {(to, (t, t ')) E f~ x A, [(to, t) E U and (w, t ' )  E U}. 

It is easy to show that P~• = 1 implies Paxa, (W0") )  = 1. Fur the rmore ,  for 

any ( to , (1 , t ' ) )~  W0") ,  X(to, t ) ~ X ( t o ,  t'), so X satisfies the lifting condit ion.  

DEFINITION 5. An internal function X : l i  x T ~ *M is approximable by step 
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functions if for any positive e E R there is an n ~ N such that  for all m E No, 

m < n there exists an internal function X..,- : f ~  *M satisfying 

P.• (*d (X(o,, t), x.,t.,(~)) ---- e )  =< E. 

An internal function F : T--> *M is approximable by step functions if for any 

positive e E R there is an n U N such that  for all m E No, m < n there exists 

p.,m E * M satisfying 

PT(*d(F(t), p..[.,]) _--- e) _-< e. 

PROr'OS[TION 6. Let X : f~x T---~ *M (F : T---> *M) be internal. X (F) is 

approximable by step functions if X (F) satisfies the lifting condition. 

We first show: 

LEMMA 7. Let X : fl • T--> * M be internal and let n E N, e E R, e > O. Then 

for each m ~No, m < n there exists t..m ~ T n *[m/n,(m + 1)/n) such that 

13• T (* U (X(co, t), X(~o, t..t.,~)) -> e ) _-< 2P.• (* d (X(to, t), X(to, t')) _- e) 

(correspondingly for F: T ~ * M). 

PROOV. Fix e ~ R, e > 0 and n E N. For any m E No, m < n define 

S , , , : = { t E T ] m / n < = t < ( m + l ) / n } ,  S . : =  U 2 S t t ,  m �9 

m < n  

Then S. C A,/. and IS. I => I A,,'- l" 2- ' ,  hence 

(1) fin• (* d (X(to, t), X(to, t ')) => e) =< 2/5.xa,,. (* d (X(to, t), X(r t')) => e ). 

Since for any m E No, m < n 

P.• (*d(X(,o,  t), X(,o, C)) > ~ ) 

= ~ P.xs...(*d(X(~o,t),X(to, t ' ) )~e) . lS. , . , I - ' ,  
r m 

for any m E No, m < n there must be t.,m E S.,,. such that  

(2) P.xs..m (* d (X(,o, t), X(,o, t..m )) -> e ) _-< Po• (* d (X(,o, t), X(,o, C)) _-> e ). 

Thus 

P~ (*d (X(,,,, t), x(,, , ,  t..~.,j)) => ~) 

-~ n-' ~. P.• X(o),t..~))>= ~1 
m ~ : n  
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by (2) < n ' ~ fi , ,•  ) )=  e) 
t n < n  

= P,,xs. (* d t), x(to,  t')) >= 

by (1) ~ 2/~,• (*d(X(oJ, t), X(o ,  t')) >~ e ). 

Proposition 6 follows from Lemma 7 since the lifting condition implies that for 

any positive e E R 

n,,• as n ---~ oo. 

The last step in the proof of Theorem 3 is 

PROeOSlTXON 8. Let X : I ~ x T - - - ~ * M  ( F ' T ~ * M )  be internal. X (F) is 
smooth if it is approximable by step functions. 

PROOF. If X is approximable by step functions, then for any positive e E R, 

there is an n E N  and VC_I~x T such that P~, •  > 1 - e  and for all to ~1~, 

t , t ' E T ,  

(1) if (~o, t), (w, t') E Vand[n t]=[n t ' ] , then*d(X(w, t ) ,X(w, t ' ) )<=Ze .  

For any n E N  and 6 ~ (0,1], the set T("'8): = T \ ( U" - '  * ,,-o [m/n, m/n  + 6)) has the 

property that whenever t, t ' E  T c"'"), It - t ' [  =< 6, then [nt] = [nt']. Now, for any 

positive e, 6 E R, if n and V_CI~x T are chosen according to (1), the set 

V ' :=  V N 1) x T (".~) has measure not less than 1 - e - n6 and 

if to E ~ , t , t '  E T , (w , t ) , (w , t ' )E  V ' , a n d l t - t ' l < = 6 ,  
then *d(X(w,  t), X(w, t')) <- 2~. 

Rephrasing this, for any positive e E R there exist U, _C f l x  T and 6, > 0 such 

that Pn• and for all w E l ~ ,  t , t ' ~ T  

if (oJ, t), (w, t') ~ U, and [t - t 'l =< 3,, then *d(X(oJ, t), X(w,  t')) <_ e. 

Now let 

U = lira inf U~,, = U ('] U~/~. 
j = l  i = j  

Elementary calculations show P~• 1 and, whenever to E ~, t, t 'G  T such 
that (co, t), (to, t ') ~ U and t ~ t ', then * d (X(to, t), X(to, t')) _-< l/i 2 for all i > j for 

some j E N, i.e. X(to, t) ~ X(to, t'). 

By Propositions 4, 6, and 8, the proof of Theorem 3 is now complete. 

REMARK 9. Theorem 3 shows that the set of internal functions F :  T--**M 
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which are liftings is Borel, and in fact H ~ over the internal sets (similarly for 

internal functions X : f~x  T ~ * M ) :  it is easily seen that an internal function 

F :  T ~  *M satisfies the lifting condition iff for every m ~ N there exists n E N 

such that 

(1) f'a. (*d(F(t), F(t'))<= 1/m)>_ 1 - 1/m (r E *[0, l /n]).  

Furthermore, if p~, p2," "" is a countable dense subset of M and S~/,. (Pi) denotes 

the set { q C M I d (p,, q) <= I / m } ( m, i E N), then F has values a.s. nearstandard in 

*M iff for every m E N there exists n E N such that 

( ,)) (2) PT f - '  U *Sl,,~(p, _-_]-]/m. 
i=1 

Thus the set of liftings is given by (N~,=~ U~= 1 An,m) A ( A m =  l U~= 1 Bn.m) where 

A..m for n, m E N is the (internal) set of internal functions F : T---~ *M satisfying 

(1) and B.,m is the (internal) set of internal functions F : T---~ *M satisfying (2). 

We now turn to the treatment of functions which are S-integrable with respect 

to d. 

For internal X :f~ x T---~ *M define the "smoothness function" Gx : *[0,1]--~ 

*R by 

Gx0" ) :=  ~ ~'~ *d(X(oo, t) ,X(o),t ')) .[A,[- '  .[lIl-'. 
r ( I , I ' ) ~ A  T 

Similarly, for internal F"  T--> *M, 

GFO'): = ~ *d(F(t) ,F(t ' ) ) ' [A, l - ' .  
(t,t')~A T 

G• and GF are internal. 

DEFINITION 10. An internal function X : f ~ x  T--->*M satisfies the lifting 
condition in integral form if 

Gx( 'r)~O whenever 7E*[O,  1], r  

An internal function F: T ~ * M satisfies the lifting condition in integral form if 

G v ( 7 ) ~ 0  whenever 7 E * [ 0 , 1 ] ,  ~ '~0 .  

An easy consequence of Tchebycheff's inequality is 

PROPOSmON 11. The lifting condition in integral form implies the lifting 
condition. 
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Conversely, we show: 

PROPOSITION 12. A s s u m e X : l ) •  

respect to d and satisfies the lifting condition. Then X (F) satisfies the lifting 
condition in integral form. 

PROOF, Straightforward arguments show that S-integrability with respect to 

d of X implies that the function 1~ x A.--.  *R: 

(~o, (t, t'))--, *d(X(,o, t), X(,o, t')) 

is S-integrable on f~ x A, for any ~" E *[0, 1]. 

Fix ~" = 0 and let 

v :  = {(,o, (t, t ' ))  ~ n • a .  I X ( , . ,  t )  = X(o, ,  t')}. 

By assumption, Pn• ( V ) =  1. For any internal W C V 

0~- GxO')t,,,: = Z *dfXfoJ, t),X(co, t'))[a,I '.lf~[ ' 
(~,g,t'))E w 

Using Theorem D, a typical saturation argument shows that there is an internal 

V' C_ 12 • A. such that P.• (V A V') - 0 and 

(1) ()~G~O-)t~,: = ~'. *d(X(oJ, t),X(o~,t'))lA, l--'.lfll ' 
(~,(t.t'))e v" 

Furthermore, since P,• (f~ x A, - V') = Pn• (~ x A, - V) = 0 and 

*d(X(to, t),X(co, t')) is S-integrable on f i x  A,, 

(2) o-~ Gx 0-) t,,~. ,,.:= ~] *d(X(,,,,t),Xfo,,t'))IA.l-'.rnl-'. 
(~,(i,t'))Eilx:X+ . v' 

(1) and (2) prove GxOr)~O. 
As a consequence of Theorem 3 and Propositions 11 and 12 we get: 

COROLLARY 13. Let X ' f ~ x  T--o *M (F :  T--* *M) be internal. 
(i) X (F) is a lifting if it satisfies the lifting condition in integral form and has 

values a.s. nearstandard in *M. 
(ii) X (F) satisfies the lifting condition in integral form and has values a.s. 

nearstandard in *M if it is a lifting which is S-integrable with respect to d. 

EXAMPLE 14 (Brownian motion, ef. [1]). Let f ~ = { - 1 , 1 }  7, X(to, t )= 
Zo<s~,to(s)[ TI -'/2 (w E f l ,  t E T). With respect to R with the standard metric we 

then have 
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(i) 
(I,I')EA~ \ ~o~Efl 

--E 
(l,l')EA~ 

(by Schwartz' inequality) 

I t -  t'l"-~lA. I ' ~ 0  

for any ~" ~ 0, i.e. X satisfies the lifting condition in integral form 

1 
(ii) ~ ~ X2(o~,t)lz['l~[ '= ~ t'lT[-' ~-~<~, 

so X has values a.s. finite (i.e. nearstandard in *R) by Tchebycheff's inequality. 
Hence, X is a lifting of some (measurable) function by Corollary 13. 

2. Liftings as nearstandard objects 

We now introduce spaces of measurable and with respect to d integrable 
functions. Let M~ ([0, 1]) denote the set of measurable functions [0, 1] ~ M. We 
define DM :(MM ([0, 1]))2---~ R by 

DM(/, g ) :=  inf{r~ E R  I h(d(f(t),g(t))>= ~1)<= ~}. 

Elementary considerations show that DM is well-defined and has the properties 
of a pseudo-metric. D ~ ( f , g ) = 0  is equivalent to [ ( t ) =  g(t) a.s. We turn 
MM([0, 1]) into a metric space (lVI~ ([0, 1]), s by setting 

(/~IM ([0, 11),/SM) := (MM ([0, 1]), DM)/-- 

where - denotes the equivalence relation on M .  ([0, 1]) defined by 

f - - g  iff DM(f, g) = 0. 

For any f ~ Mu([0, 1]) we let f denote the equivalence class of f in lVI~ ([0,1]) 
with respect to - .  For functions F E*MM the equivalence class of F in 
*MM([0, 1]) is denoted by F. 

We say [:[0,1]---~M is an n-step function if it is constant on each 
interval [re~n, (m + 1)/n) (m E No, m < n). Correspondingly, for H ~ * N -  N, 
F:*[0,1]---~*M is an H-step function if it is constant on each interval 
[K/H, (K + 1)/H) (K ~ *No, K < H). 

For any F :  T---~ *M there is an associated [ T[-step function ~": *[0, 1]---~ *M 
defined by F(t)=F(t *) where t* is the largest element of T which is -< t 

(t ~ *[0, 1]). 
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The next theorem shows that an internal function F : T---~ *M is a lifting if and 

only if the associated I TI-step function is nearstandard in *MM([0, 1]): 

THEOREM 15. A n  internal function F : T--> *M is a lifting o f f  : [0, 1] --> M iff 
*D,~(F, *f) -~ 0 (i.e. f is the standard part of ~ with respect to if)M). 

(Notice that, if F is a lifting of f, then/~ @ *MM ([0, 1]) and f E M~, ([0, 1]) by 

Theorem C, so *DM(I 6, *f) is defined.) 

PROOF. Suppose F is a lifting of f. By Propositions 4 and 6, F is approxim- 

able by step functions, i.e. for any positive e E R, there is an n E N such that for 

all m E N,,, m < n there exists pn.,, ~ *M so that 

(*) P,  (*d(F(t),  P~-I,,I) --> F, ) -<_ e. 

It is easily shown that, since F has values a.s. nearstandard in *M, the p~.m can be 

chosen standard (i.e. E M). 

Since F lifts f, this implies 

A({t ~ [0, 1][dff(t),p.,t,~l)> e}) < e. 

Application of transfer to this inequality and thinking of F in (*) as a I TI-step 

function yields 

*X (*d(P(t ) , f ( t ) )  > 2e ) <= e. 

Since E was arbitrary, this means that *DM(~', * f ) ~  0. 
For the converse assume that F :  T--->*M is internal, f~MM([0 ,  1]), and 

DM(b', *f) =0 .  By Theorem C, f has a lifting G : T ~  *M. The first part of this 

theorem shows *DM(G,*f)=O, hence by assumption *DM(G,/~)~0. This 

means that for any positive e E R 

*)t (*d((~(t), F(t)) >- e) < e. 

Since both 0 and 1 ~ are IT I-step functions this is equivalent to 

Pr(*d(G( t ) ,F( t ) )  > e) <- e, 

i.e. G(t)~-F(t) a.s. (Pr),  so F also is a lifting of f. 

We now turn to the treatment of functions which are integrable with respect to 

d. Let LM([O, 1]) be the set of functions [0, 1 ] - ~ M  which are integrable with 

respect to d. We define a pseudo-metric DL on LM ([0, 1]) as follows: 

fo' DLff, g): = d( f ( t ) ,g ( t ) )d t  (f, g e L,.([O, 11)). 
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Obviously, for f, g ~ LM ([0, 1]), DL (f, g) = 0 iff f -- g. For f ELM ([0, 1]) and 
g E MM([0, 1]), f -- g implies g E LM([0, 1]), i.e. L~([0, 1]) is closed under the 
relation - .  (L~([0, 1]), DL) is turned into a metric space by setting 

(iM ([0, 1]), DL) = (L~, ([0,1]), DL) /~ .  

For M = R with the standard metric, f,M ([0, 1]) is the Lebesgue space L 1([0, 1]) 
of integrable functions on [0, 1] (with the metric induced by the standard norm 
on LI([0, 1])). 

The following analogue of Theorem 15 shows that an internal function 
T--) *M is a lifting which is S-integrable with respect to d if and only if the 
associated [ T I-step function is nearstandard in *LM([0, 1]): 

THEOREM 16. Let F:  T ~ * M be internal and let f :  [0, 1] ~ M. F is a lifting of 

f which is S-integrable with respect to d iff *DL (F, *f) -~ 0 (i.e. f is the standard 
part of ~ with respect to DL). 

To prove Theorem 16 we use: 

LEMMA 17. For any f E LM([0, 1]), *f is S-integrable with respect to d on 

[0,1l. 

PROOF. Using Theorem H and standard measure-theoretical arguments. 

PROOF OF THEOREM 16. This is a consequence of Theorem 15. 
Assume that F is a lifting of f which is S-integrable with respect to d. 

Theorem G implies f ELM ([0, 1]), so *f is S-integrable with respect to d by 
Lemma 17. 

S-integrability with respect to d of F on T implies S-integrability of/~ on 
*[0, 1], so the function *d(F(t), *f(t)): *[0, 1]-->*R is S-integrable on *[0,1]. 
Together with *DM(F, *f)-~0, which follows from Theorem 15, this implies 
*DL (F, * f )~  0: using the definition of DM we see that *DM(P, * f )~  0 implies 
that for some positive e ~ *R, e ~ 0, 

*A(A) =< e for A:={t  ~ *[0, 1] ] *d(F(t), *f(t))>= e}. 

We now have 

~*[0,1I-A 

by definition of A, and 

*d(F(t), *f(t))d*A ___< e ~ 0 

* d (F(t ), * f(t ))d* ~t -~ 0 
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by S-integrability of *d(F(t), *f ( t ) )on  *[0, 1]. Hence *DL (P, * f )~0 .  
Conversely, assume *DL (l ~, *f) ~ 0. Using Tchebycheff's inequality, it follows 

that *DM(F, *f) ~ 0, so F is a lifting of f by Theorem 15. *DL (i~, *f) ~ 0 and 
S-integrability with respect to d of *f which follows from Lemma 17 imply that 
also b" and thus F are S-integrable with respect to d. 

REMARK 18. Theorems 15 and 16 together with Theorem 3 and Corollary 13 
give a criterion for nearstandardness in *film ([0, 1]) and */7,M ([0, 1]) for I T [-step 
functions. By working with liftings defined on *[0, 1] instead of T (see Remark 
B) this criterion can be formulated in general form applicable to any function in 
*MM([0, 1]) or *L~([0, 1]), respectively. 

Theorems 15, 16 and C, G hold for any hyperfinite time interval T of the form 
T = { K / H  [ K E No, K < H}, H E *N - N. Consequently, we get the following 

approximation results: 

COROLLARY 19. For any measurable f : [0, 1]--> M and positive e E R, there is 

an n E N and an n-step function g : [0, 1] ~ M such that 

h (d • t ) ,  g(t)) >= e) < e. 

COROLLARY 20. For any f ELM ([0, 1]) and positive e E R, there is an n E N 
and an n-step function g : [0, 1] ~ M such that 

o I d(f( t) ,  g(t))dt <- e. 

Using separability of M, Corollaries 19 and 20 show that the spaces 
(I~IM ([0, 1]),/SM) and (/ZM ([0, 1]),/5, ) are separable; a countable dense subset is 
in either case given by the set of step functions with values in a fixed countable 

dense subset of M. 
As another example for a standard result we prove the completeness of 

the space (/ZM([0,1]),/SL) by nonstandard methods. The completeness of 

(I~IM ([0, 1]),/3,,) can be proved analogously. 

PROPOSITION 21. Let (F~)~EN be a sequence of internal functions T--**M. 

Assume F : T---> *M is internal and 

T h e n  

(a) 

(b) 

~ (Fi, F)---~ 0 as i--.>oc. 

if all F~ satisfy the lifting condition in integral form, so does F; 

if all E have values a.s. nearstandard in *M, so does F; 
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(c) if all F~ are S-integrable with respect to d, so is F. 

PROOF. (a) follows from the inequality 

I G~, 0")- G~('r)[ =< ~ I*d(F~ (t), F, (t'))- *d(F(t), F(t'))[ [A, I-' 
( t , l ' ) E : ' .  

=< ~ *d(E (t), F(t))[A, [ ~ + *d(F, (t'), E (t'))IAT 1-1 
( t , t ' )EA r 

< 2 ~ *d(F, (t), F(t)). (2[~" [T[] + 1). [A, I -t 
7 

_-< 4 ~ *d(F, (t), F(t))[ T[-' 
T 

= 4*DL (/~,,/~) (~" E *[0, ~], i E N). 

(b) Standard arguments show that 

~ (F~, F)---~ 0 as i ---~ ~ 

implies that for almost all t ~ T for any positive e E R there exists i E N such 

that *d(F, (t), F(t)) < e. If all F~ (i ~ N) have values a.s. nearstandard in *M this 

shows that for almost all t E 7" for any positive e E R there exists p E M such 

that * d ( F ( t ) , * p ) < e ,  hence for almost all t E T ,  F ( t ) i s  nearstandard by 

completeness of M. 

(c) follows from the inequality 

*d(F(t),*p)[ T]-'~ ~ *d(F,(t),*p)[ T[ '+*D~ (P,, :) 
t E B  t E B  

for any internal B C_ T, p E M, i E N. 

THEOREM 22. (EM ([0, 1]),/)L) is complete. 

PROOF. Let ()~),~N be a Cauchy sequence in/SM ([0, 1]), (F~),~N a sequence of 

respective liftings which are S-integrable with respect to d existing by Theorem 

G. By Theorem 16, for all i E N 

(,) *DL (~,*f~) ~ O, 

so (~),~s is still a Cauchy sequence in *LM([O, 1]) in the sense that for any 

positive e E R there is an no E N such that 

*D~(~,~)<~ (/,/>no). 
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By saturation, there is an internal F :  T---~*M such that 

(**) ~ (P,, P ) ~ 0  as i~oo .  

By Proposition 21, the properties characterizing by Corollary 13 liftings which 

are S-integrable with respect to d are preserved under such limits, so, since all F~ 

are liftings which are S-integrable with respect to d, so is F. Let f ELM ([0, 1]) be 
a function lifted by F. Then 

*DL ( I  ~ ,* f )~O 

by Theorem 16. This, (*), and (**) show that f is a limit of (15)i~.~ in 

( s  ([o, 

REMARK 23. For this proof it is by no means essential that we work with 

hyperfinite liftings T--~ *M. In fact, the proof becomes slightly simpler if we 

have a more general notion of a lifting and Theorem 15 according to Remark 18. 
But, as shown by this proof, the concept of a hyperfinite lifting T--~*M is 
powerful enough since such liftings are "S-dense"  in the set of nearstandard 

elements of *LM([0, 1]) as shown by Theorem 16. 

Intuitively, in the nonstandard theory liftings T ~ *M replace approximating 

sequences of step functions and Theorem G (ii) plays a role similar to that of the 

combination of Corollary 20 and Theorem 22. 

As a consequence of Theorem 15 we get a relationship between the three 

different types of liftings occurring in Definition A. 
For any measurable x : I~ • [0, 1] ~ M let ~ : l~---~/VIM ([0, 1]) be defined by 

x(,o,.), 

i.e. x(to) is the equivalence class with respect to DM of the function 
x(to, �9 ) : [0, 11--~ M. 

For any internal X : f / •  T--* *M define ,X" : O--* *lVI~ ([0, 1]) by 
....-< 

:= x(,,,, .). 

For any x : O • [0, 1] ~ M which is integrable with respect to d, 2 has values a.s. 

in/SM ([0, 1]). 

THEOREM 24. Let X : O •  T---~ * M be internal and let x : f / •  [0,1]--*M be 

measurable. X is a lifting of x if] f (  is a lifting of ~. 

PROOF. By definition of ~ and )~ and Theorem 15, we are done if we show: 
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an internal function X : I 2 x  T-->*M is a lifting of a measurable function 

x :g l •  [0,1]--*M iff for almost all to E f t ,  X(to, . )  lifts x(to,.). 

The "only-if-part" follows from Theorem F by definition of a lifting. 

If for almost all to E f l ,  X(to, �9 ) is a lifting of x (to,.), then by Theorem 3 for 

almost all to E O for any positive infinitesimal ~" for almost all ( t , t ' )EA, ,  
X(to, t) ~ X(to, t') and for almost all to E 1~, X(to, �9 ) has values a.s. nearstandard 

in *M. So for any positive infinitesimal ~" for almost all ( to , ( t , t ' ) )Ef~•  

X(to, t) ~ X(to, t') since by internality of X for any positive infinitesimal ~" the set 

((to, (t, c)) • a. Ix( . , ,  t) x(to, 

is Pa• -measurable. 

Similarly, it follows that X has values a.s. nearstandard in *M by showing that 

{(to, t) E 1) x T I X(to, t) is nearstandard} 

is Pn• 

Hence, X is a lifting by Theorem 3. So, if for almost all to E l~, X(to,. ) 

is a lifting of x(to,.),  then X is a lifting of some measurable function y :  

L-I • [0, 1] --* M. Using the first part of this proof and measurability of x it follows 

that X also lifts x. 

COROLLARY 25. I fx  : l'l • [0, 1] --~ M is measurable, then ~ : 1)---~ i~'IM ([0, 1]) is 
measurable. 

PROOF. By Theorem C (i), (iii), and Theorem 24. 

REMARK 26. In this and the last section we parallelly treated measurable 

functions by stochastic methods and with respect to d integrable functions by 
integral methods. The second treatment (i.e. by integrals) can also be used to 
study the set of measurable functions [0,1]--*M and liftings T--~*M by 
bringing into account that in the preceding results the metric d is variable. By 
considering a bounded metric d '  on M equivalent to given d (for instance, 
d ' - -  d A 1) S-integrability assumptions become automatically true whereas the 

sets of measurable functions [0, 1]-~ M and liftings T--~ *M remain unchanged. 

So we have, for example, the following consequence of Corollary 13: an internal 

function F :  T--~*M is a lifting (with respect to d) iff F has values a.s. 

nearstandard in *M and satisfies the lifting condition in integral form with 

respect to d', i.e. 

~, *d '(F(t ), F(t'))" I A, I-' = 0 ('r ~ * [0, 11, ~" -~ 0). 
~,r 
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As another example we mention that a metric on the set of measurable functions 

[0, 1] ~ M can be obtained by setting 

fo' D~,([, g) = a'if(t), g(t))dt (f, g ELM ([0, 1])). 

We now follow up another aspect of Theorem 16. Theorem 16 says that with 

respect to "integration properties" liftings are infinitesimally close to their 

standard versions. More concretely, we show, improving Theorem I: 

THv.O~EM 27. Let f:[O, 1]--)M be integrable with respect to d and let 
F : T--) *M be internal. The following are equivalent: 

(i) F is a lifting of f which is S-integrable with respect to d; 
(ii) for any continuous h : M x [0, 1] --~ R satisfying 

[h(p,t)-h(q,t)[<=d(p,q) foralltE[O, 1], p, q E M ,  

*h(F(t), t)l T[ -~ exists and equals [ '  hff(t), t)clt. ~ x 
#ET dO 

Note that for any h with the above properties the function h(f( t) , t ):  
[0, 1] --) R is integrable. 

PgooF. (i) ::), (ii). Let h with the above properties be given. Define the 

functions F ' :  T---~*R and f ' : [O, 1 ] - * R  by 

F'(t):=*h(F(t), t) ,  f ' ( t ) :=h(f( t ) , t ) .  
So 

I /o ,~r* h (F(t ), t )l Tl-' - h(f(t)'t)dtl = I f'lo,~j (F'(t)-*f'(t))dtl 

--< f'to,,j I P'(t)- *f'(t)l dt 

<= f.[o.,] *d(_~(t), *f(t))dt 

by the properties of h 

= *D.  (P, *f)  

--~ 0 by Theorem 16. 

(ii) :::> (i). Let e ~ R, e > 0. By Corollary 20, for some n ~ N there is an 

n-step function g :[0, 1]----~ M such that DL(g,f)< t. By (ii), for any continuous 

z : [0, 1]--*R and p E M  
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~  r *d(F(t),  *p)" *z(t)" I TI - ' =  fo ~ d( f( t ) ,p)"  z(t)dt. 

Hence for any m E No, m < n, by approximating lt,,/,~(,,+l)/n j : [0, 1]---> [0, 1] 
pointwise by continuous z => ltm/~(,,+l)/nJ, Z : [0, 1]--'> [0, 1] we get 

o~ *d(F(t), *g(m/n))l TI-' <-- ~"§ d if(t), g(m/n))dt 
t~.TN*[rnln,(m+l)ln] J rn/n 

and thus 
^ A  

o~, * d(F(t  ), * g(t )) I T1-1 = ~ (F, * g rr ) < e 
t E T  

where *g rr is the restriction of *g to T. Since g is an n-step function, 

~ r r , * g ) = 0 .  Consequently,  ~  Since e was arbitrary, 
~ = 0, i.e. F is a lifting of f which is S-integrable with respect to d by 

Theorem 16. 
Similarly, liftings of measurable functions f : [0, 1] ---> M can be characterized 

by stochastic means. We note that we also have the following characterization 
(see Remark  26): 

THEOREM 28. Let f : [0, 1] ---> M be measurable and F : T--> *M internal. The 

following are equivalent: 
(i) F is a lifting of f;  
(ii) for any bounded continuous h : M • [0, 1] --> R 

~ f,' ~, h (F( t ) , t ) lT I  l= h(~(t),t)dt. 
t E T  

PROOF. (i) ~ (ii) follows from the corresponding part of Theorem 27 since 
*h(F(t) , t ) :  T---~*R is an S-integrable lifting of h( f ( t ) , t ) :  [0, ll---,N for any 
bounded continuous h : M x [0, 1] --~ R. 

(ii) ~ (i) follows similarly as the corresponding part of Theorem 27 by 
working with the bounded metric d ^ 1 on M instead of d. 

Theorem 27 has the following consequence for functions f E LM([0, 1]) 
(Theorem I is strong enough for the following): 

COROLLARY 29. Any  f ~ LM ([0, 1]) has the following property : 

(A 2(st A1/.)) -1 ~ d(f(t) , f ( t ' ))d(t ,  t')-->O as n --> oo. 
Js t ~l/n 

PROOF. By "sectionwise" application of Theorem 27. Show that, given a 
lifting F of f which is S-integrable with respect to d, the sum function T---> *R: 
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t----> E * d(F(t), F(t'))[ T I-' 
I ' E T  

~t'-tl~il;n 

is an S-integrable lifting of the function [0, 1]--~R: 

t---~ ~ d(f(t),f(t '))dt '  
r [ I t - - r i l l / . }  

for any n E N, using Theorem 27. This proves that for any n ~ N 

(A2(stA,,.)) ' f~ d(f(t) , f(t '))d(t , t ')  
i/n 

= o E * d (F(t) ,  F(t')). I A,,. 1-' =o ~ ,  (1/n). 
( f . I ' )EAI ;  n 

The claim then follows from the fact that ~ as n ~ which is a 

consequence of Corollary 13(ii). 

3. Construction of liftings 

We now introduce a method to construct liftings of measurable functions 

f : [0, 1]--*R. 

PROPOSmON 30. For any F E *La([0, 1]) let LF : T---~ *R be defined by 

LF(t):  = I T[" f ,+,,l~l F(s)ds. 

If * DL ( F, * f)  -~ 0 for f E La([0, 1]), then Lr is an S-integrable lifting of f. 

PROOF. We show *DL(s so the claim follows from Theorem 16. By 
Theorems G and 16, there is an internal function G:T- - -**R satisfying 

*DL ((~, *f) ~-- 0. Hence 

*DL(G,I~) < ~ IG(t)-- LF(t)] IT[- '  
l E T  

= F 

< [G(s ) -F ( s ) ld s  

= *DL (1~, F),  

so *DL (I~v, *f) <---- *DL (F, *f) + 2DL ((~, *f) ~ O. 
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COROLLARY 31. 

defined by 
For any integrable f : [0, 1]---> R, the function Lt" T---> *R 

Lr( t )  : = I T["  :J'+'/JTI *f(s)ds 

is an S-integrable lifting off. If f is continuous, Lf is a uniform lifting off, i.e. for all 
t ~ T, ~ = f(~ 

PROOF. L! is a uniform lifting of f if f is continuous, since for continuous f 

for all t E T for all s E [t,t + 1/[ T[], *f(s)--~f(~ 

COROLLARY 32. For any measurable f:[0,1]-->R, a lifting L'I: T--~*R is 
defined by 

L[(t)= *e-' O T[ . f '+'/m *e(*f(s))ds) 

where e : R ~ ( - 1 , 1 ) ,  e(x)= x(1 +lxl) -L 

REMARK 33. The existence of liftings of measurable functions (see Theorem 
C (ii)), S-integrable liftings of integrable functions (see Theorem G (ii)), and 
uniform liftings of continuous functions has been shown by Anderson [1] and 

Keisler [4]. 

A direct proof of Corollary 31 (using standard measure theory instead of 
Theorem G) can be given by proving the claim for continuous f first and using 
the fact that the set of continuous functions is dense in L'([0, 1]). 

We now apply Proposition 30 to stochastic processes. For any f, g ~ L.([0, 1]), 
a = < b E [ 0 , 1 ] , i f f - g  then 

fob f(s )ds = jab g(s )ds, 

so for any f E/S. ,  a, b E [0, 1], it makes sense to define 

I.,b (f) : = f(s)ds. 

Similarly, for ff ~ */: . ,  a < b E *[0, 1], we write 

/.,b (F) := f.b F(s )ds. 

We note that for any f - g E L.([0, 1]) the liftings i t ,  L s of f and g defined by 

Corollary 31 are identical. 
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COROLLARY 34. Let x : f lx [0 ,1 ] - ->R be integrable, X"  :I2~*/~R([0,1]) a 

lifting of ,2 : l'l--->/S~([0, 1]). Then the function X : fl x T--* *R defined by 

x(to, t):= I TI"/,,,+,,~j(X~ (m)) 

is a lifting of x. 

PROOF. X is clearly internal. 

Since X- is a lifting of ~, for almost all to E ll, */SL (X- (to), *(:~(to))) ~ 0, so for 

almost all to E l-l, X(to,. ) is a lifting of x(to,. ) by Proposition 30. This implies 

that X is a lifting of x as shown in the proof of Theorem 24. 

REMARK 35. For any integrable x :Ilx[0,1]--->R, ~ :[~--->/SR([0,1]) has a 

lifting by Theorem C since ~ is measurable (it is even integrable with respect to 

E3L). This can be proved by standard methods or by proving the analogous 

versions of Theorem 24 and Corollary 25, for LM ([0, 1]), which also gives a direct 

construction of a lifting of ~ using an S-integrable lifting of x. 
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